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Abstract

This paper makes two points. First, the modeling used in the rational (or
Bayesian) learning literature can be generalized to handle the repeated shocks
to preferences inherent and implicit in models of quantal response equilibria
(QRE). In particular, we note that the Bayesian model and the QRE model
are really not as different as often portrayed in the literature. Second, Bayesian
learning under appropriate conditions therefore leads to a QRE.
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1 Introduction

This paper brings together two literatures. The first is Bayesian learning in repeated
games. This literature is often referred to as rational learning. Papers in this
literature include those of Jordan (1995), Kalai and Lehrer (1993), Nyarko (1998),
and many others. The other literature is that on quantal response equilibria (hence-
forth QRE). This literature includes the those of Fudenberg and Kreps (1993) and
McKelvey and Palfrey (1995) (who coined the term QRE), and many others. The
QRE models are often referred to as incorporating bounded rationality or behavioral
economics.

This paper makes two points.  First, the modeling used in the rational (or
Bayesian) learning literature can be generalized to handle the repeated shocks to
preferences inherent and implicit in models of QRE. In particular, we note that the
Bayesian model and the quantal response model are really not as different as often
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portrayed in the literature. Formally, the quantal response model is typically struc-
tured to have shocks which enter the utility function, usually evolving over time in
an independent and identically distributed manner. What we do here is to re-write
the shocks to the utility function as Bayesian types which can be interpreted as being
observed at the beginning of the infinite horizon Bayesian game.

Our second point has to do with learning. Given that we are able to embed the
QRE model into a Bayesian model, we show that techniques similar to those used
in the rational learning literature imply convergence to a QRE. Bayesian learning,
under appropriate conditions, therefore leads to a QRE. Fudenberg and Kreps (1993)
obtain the convergence to a QRE in a model similar to one studied here (what we
will later call the Additive Shocks Model), but where it is assumed that learning
takes place through some kind of fictitious play (i.e., ?smoothed”). This paper is the
Bayesian equivalent of that paper, where learning takes place via Bayesian learning.
Jackson and Kalai (1997) have also studied a model similar to the one presented
here with repeated shocks to preferences (which are due to different generations of
individuals entering each period) and obtain related results linking the limiting play
of their "recurring games” to equilibria of an underlying Bayesian game.

In the earlier literature on rational learning models, there has been quite a bit of
discussion as to whether the appropriate notion of learning and convergence should be
with respect to the ”true” play on the one hand, or the beliefs or ex ante distribution
of play on the other (see Jordan (1995) and Nyarko (1998)). In models of QRE, the
true play is typically a pure action (which is contingent upon the realized shock to the
utility function); the beliefs about play are a distribution. The QRE is a distribution,
so is therefore in the space of beliefs, not true realized actions. In particular, it is
the beliefs or ex ante play, and not the true or ex post play, which constitute a QRE.
When we embed the quantal response structure into our Bayesian game setup, we
therefore conclude that the appropriate notion of learning is with respect to the ex
ante or beliefs; it is the beliefs which converge to a QRE.

It should be remarked in passing that Jordan (1997) and Nyarko (1994) provide
results regarding the merging of ex ante play (or beliefs about play) and the em-
pirical distribution (i.e., average play) of the true realized sample path. Applying
those results here enables us to obtain results relating the limit points of empirical
distributions to QRE.

2 The Model with Shocks to Payoffs

2.1 The Static Game, I

We begin with the static model, on which the concept of a quantal response equi-
librium is defined. There are a finite number, I, of players indexed by i=1,...,I, who
are playing a normal form game. Player i’s action space is the finite set A’. De-



fine A = [[;c; A" and A~ = [[;4; A’. Given any metric space X we let p(X) denote
the set of all (Borel) probability measures on X. If for each i in a finite or count-
able index set C, X" is a metric space and ¢' € p(X?), we define ®;c7q" to be the
induced product measure over the product space [;c; X*. We define A° = p(A?),
A ={qg"=®;u¢ : ¢ € A Vj)}and A= {q = Ric1¢’ : ¢ € A7 Vj)}. At the be-
ginning of the period player i observes a shock e’ to her utility function. The shock
takes values in the compact set £%and has ex ante distribution 7. The shocks of the
different players are chosen independently of each other, so that r = ®;c;r" is the
ex ante distribution of the vector of shocks, {e'},.; on € =[];c; €. The function
u' ;A x E — R is player i’s post-shock utility function given shock vector e’ and
action profile a = (a*,a™"). We suppose that u’ is Borel measurable and bounded,
with upper bound 1, and we normalize u’ so that it is non-negative. u’: A x £ — R
is extended to u’ : A x £ — R via the obvious process of taking expectations. The
tuple I' =< I, A, &, 7, {u'}icr > shall be referred to as the normal form game with
shocks.

A special case of this is the Additive Shocks Model, where (i) the shock is a vector
of the form e = (€, (a’))gica:, S0 that £ = R4 (in particular, there is a scalar shock
associated with each action of player i); (ii) r* admits a continuous density function
on &% and (iii) the shocks enter the utility function additively: i.e., there is a “core”
function for each player i, w’ : A — R, such that

u'(a’,a ' e') = w'(a',a ") + €'(a’) (1)

We use the notation T'yqq =< I, A, {w'}ic;,E,7 > to refer to the Additive Shocks
Model.

Define an action rule for player i to be any Borel measurable mapping o* : A% x
&' — A’ In particular, o’(7—*, ¢') prescribes an action or mixture in A when player
i’s shock is e and her belief about her opponents is 77*. The action rule o’ is said

to be £ — optimal against 7=* € A~ if Va' € A* and ' — a.e. €',

/ i Ui(ai(ﬂ_i7 ei)v a_iv ei)dﬂ-_i > v ui(ai’ a_iu ei)dﬂ-_i —£&. (2)
i i

The action rule o is e —optimal if the above is true at each 7=* € A~%. A best response
rule is any O-optimal action rule. We will use the notation o (resp. o) to denote
a best response rule (resp. & — optimal rule) for player i, and we let o, = {a’},;
and a, = {al},.;. Define A’(a’(77",.)) to be the distribution induced over A’ by the
action rule o' at beliefs 77 ; in particular, the probability assigned to action {a'} is

A (77",))(a") = /51 (7t el (ai) dr', (3)
Fix any collection of action rules o« = {a'},; and any 7 = (7!, ..., 7!) € A. Define
Ala, ) = @i A (777))). (4)
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Then A(ca, ) is the distribution induced over A by the profile of action rules a =
{a'},.; and beliefs of players about their opponents {7~}

icl -

2.2 Equilibrium Definitions

Definition 2.1. The distribution m € A is a quantal response equilibrium (QRE),
for the normal form game with shocks T' = < I, A, E,r,{u'}ic; > if for some best-
response rules o, m = Ao, ).

Fudenberg and Kreps use the language “Nash equilibrium” for the above. We
prefer to use different language, due to McKelvey and Palfrey. There will be many
different kinds of equilibria in this paper, so we prefer dedicated language.

We now define some notions of € — equilibria. The quantal response equilibrium
concept as defined above requires players to (i) have the correct ex ante beliefs and (ii)
to best respond to those beliefs. We first define an ¢ — QRFE to be one where both of
the two requirements are relaxed. We then specialize and present two other notions
of & — equilibria which relax one of the requirements but not the other. The first,
which we refer to as an € — optimal Q RE, requires players to have correct beliefs but
relaxes the requirement of best-response behavior to € — best responses. The second,
which we refer to as an € — predicting QRE, insists on best response behavior but
relaxes the requirement that players have the correct beliefs, and instead requires
them to have approximately correct beliefs.

Given any two measures q and ¢ on a metric space X, define

| ¢ —dq [|=Suppcx | ¢ —d |, (5)
where the supremum is over Borel measureable subsets of X.

Definition 2.2. Fix any € > 0 and any normal form game with shocks I' =
<I,A E r {ulic; >. Also fix a distribution 7 € A.

(a) 7 is an e Quantal Response Equilibrium (e— QRE) for T if for some profile
e — optimal action rules of players, o, || 7 — Aae,7) ||< €.

(b) 7 is an € — optimal Quantal Response Equilibrium (¢ — O QRE) for T if
for some profile of £ — optimal action rules of players, a. , m = Ao, 7).

(¢c) mis an e — predicting Quantal Response Equilibrium (¢ — P QRE) for T if
for some profile of best-response rules for players, o, || m— Aa., ) ||<e.

In the above definitions 7 represents the beliefs of players and A(«, ) is the true
ex ante play, generated by the action rules o = {a'}, ;. In the definition of an e — O
QRE, « is a collection of € — optimal action rules, and beliefs equal actual ex ante
play. In the definition of an e — P QRFE, « is a collection of best response rules, and,
further, beliefs and actual play differ by at most . It should be clear that € — optimal
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QRFE's and € — predicting QRE’s are ¢ — QRE's. Further, when € = 0, € — optimal
QRFE's, ¢ — predicting QRE’s and ¢ — QRE’s become QRE’s.

The above discussion talks about two ways in which e —QRE’s are close to QRE’s:
via € — optimal rules and via € — close play. The proposition below provides yet
another sense in which e — QRE are close to QRE’s: to every e — QRFE there exists a
QRE which is close to it (as measured by the || . || norm defined earlier). The proof
appears in the appendix.

Proposition 2.1. Fix a normal form game with shocks T =< I, A, E, 7, {u'};cs >.
Suppose the conditions of the Additive Shocks Model hold. Then ¥6 > 0 3 > 0 such
that Ve < g, for every e — QRE m, there is a QRE 7 such that || m —7* ||< 6.

3 The Bayesian Repeated GGame, B

3.1 The Model with ”Types”

We will refer to the model of the earlier section as the model with ”shocks” - the
shocks are to the payoff functions. We now discuss the Bayesian repeated game
model with ”types.” This is the framework that is used in most of the ”rational” or
Bayesian learning models mentioned in the introduction, and it provides a framework
to impose the absolute continuity assumption we will use. In the next section we
will discuss the dynamic extension of the shocks model of the previous section and
indicate that it is a special case of this Bayesian model.

Just as before, there are I players, i=1,...,I playing a normal form game, this time
repeatedly at dates n=1,2,... . Player i’s action set is the finite set A’, exactly
the same at each date n, with A° and A defined just as before. The set Hy =
Ax AxAx..x A (N-times) is the set of histories of length N. The set Hj is the
singleton set consisting of the null history, which we denote by hg; and H =U_, Hy
is the set of all finite histories. Perfect recall assumed: when player i is choosing her
date N+1 action she will know the date N history hy € Hy. The set of behavior
strategies for player i is the set F* = {f*: H — A'}. We use the notation F' = [[;c; F"
and F~* =[], F7. The space F is endowed with the topology of weak convergence.
Given any f € F, ¢(f) denotes the probability distribution over A induced by f.

At the beginning of the game, period n=0, each player observes her type which
is an element 7" of her type space T* (a complete and separable metric space). She
does not observe the types of other players at any time. Define T = [[;.; 7" and
T~ =Tl 1. Let v* € p(T*) be the ex ante distribution governing the generation of
player i’s type 7'¢T*. We suppose that the types of players are drawn independently,
so that v = ®@!_, 1/ is the distribution of the vectors of typesin T'. Let u?, : AxT?* — !
denote player i’s date n utility function - in particular, the player i of type 7 will



receive at date n the utility of u! (a, 7") when the vector of date n actions is a € A. As
before, we suppose that u’, is Borel measurable and bounded, with upper bound 1, and
we normalize u/, so that it is non-negative. Define U’ = {u},}22, and u, = {u}},.; .

We suppose that each player i forms two objects. (I) First, each player forms
beliefs over the play of her opponents. We suppose that each player i believes that
conditional on any date n-1 history, each of her opponents chooses a date n action
independently of each other. We also suppose that player i’s beliefs about her oppo-
nents is independent of her own realized type. Of course, player i may believe that
player j’s future actions will be influenced by i’s own play. An implication of Kuhn’s
(1951) Theorem! is that such belief, ", can be represented as an element? of F .
We refer to such a b® as a belief rule for player i. (II) Second, each player chooses
a behavior rule, f* : T — F* indicating what behavior strategy she chooses as a
function of her type?.

If X is a cartesian product X=YxZ and n € p(X), we denote by Margy 7 the
marginal of n on Y. Given any belief rule ' and behavior rule f' there is unique
probability measure p' € p(A> x T*) such that

MARGpip' = v' and (6)
MARG 4 pi' (. | mH)=0(f'(1%),b"), Vi-ae. T (7)

Any p* € p(A> x T") which can be generated in the above manner from a tuple
(V4,0 f*) will be referred to as an ex ante subjective belief for player i. One may
think of i* as the ex ante belief over A® x T of a player i who believes her own
types are generated by v, who chooses a behavior rule ff and whose belief about her
opponents is represent by the belief rule b®. Fix any collection of ex ante subjective
beliefs for the players, {u'}icr , with associated vector {v%, 0%, f'},c; which generate
it. Such a collection induces a unique “true” ex ante play, p* € p(A> x T'), defined
to be the unique probability satisfying the following properties:

MARGrp* = v and (8)
MARG A= p* (. | 7)=0¢( {fZ(T’)}Zg) for v-a.e. 7={7"}ics. 9)

Definition 3.1. A Bayesian game is any tuple B = < I, A, T, v, {U"*}icr, {1' bicr, p*
with {4'}ie; a collection of ex ante subjective beliefs for players and p* the induced
true distribution.

1See Kalai, E. and E. Lehrer (1993) for more on this.

2This construction is also equivalent, via a Kolmogorov Consistency theorem argument, to the
formation of what Fudenberg and Kreps call an assessment rule: a sequence of period-by-period
forecasts ' = (pt, pl,...) where pp, + Hp x T" — p(A™Y).

3 Again, this is equivalent to the formation of what Fudenberg and Kreps (1993) call a behavior
rule: a sequence of period-by-period plans ¢* = (¢}, &5, ) where ¢t TH x Hy — A7
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It should be stressed that the concept of a Bayesian game places no restrictions
whatsoever on the beliefs or the actions of players. It should really be considered
the language or framework for talking about beliefs and actions of players and how
they evolve over time. In particular, the concept of a Bayesian game does not require
players to be best-responding, to have common or correct beliefs or for any absolute
continuity condition to hold.

The rational learning models of Jordan (1995), Kalai and Lehrer (1993), Nyarko
(1998) and others can be embedded in the above framework. In those models the
types are observed at date n=0 before the play of the game, and the payoff functions
do not vary over time although they depend upon the realized types of players, so
that

ul (a,7") = u'(a,7") for all n and for all (a,7") € A x T". (10)

3.2 Embedding ”Shocks” Model into ”Types” Model

In the literature using quantal response equilibria, use is made of the following dy-
namic extension of the static model with shocks presented in the earlier section. It
is assumed that player i has a shock process, {e’}5° | € €. Before the date N deci-
sion is made player i would know the values of {¢%}_;. At date N the player will
play the static game described in the earlier section but with the shock ef; replacing
the ¢’ used before. We let I'° = <L A {u'};cr,€%, 1> denote a generic repeated
game with shocks. Recall that we used the notation I',44 to represent the one period
Additive Shocks Model. The following independence assumption will be used with
the dynamic extension to I'y4q, which will be denoted by I'SS,;: Player i’s shock pro-
cess, {€! }°° , is independent and identically distributed (i.i.d) with common marginal
distribution r*; and {e.}22, is independent of {el}° . for j# i.

We now associate with any generic repeated game with shocks, I'*°; a Bayesian
game B(I'®)=<I,A,T,v,{U'}ics, {1t' }ics, p*> whose stochastic properties are exactly
the same and which represents it in every meaningful manner. To this effect define
player i’s type space to be the sequence of realizations of the shocks 7 = (e}, €}, ...) €
[1°2, & and in particular set

T'=1] €& and v' =&, (11)
n=1
Next, define the utility function U* = {u/,}2°, by
difa, ) = uiaye)  for 7= (chch). (12)
The only part of the repeated shocks model which does not seem to sit well with
the Bayesian model with types is timing of when shocks and types are observed. In
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the shocks model the shocks are observed period-by-period. In the types model,
the type is observed once and for all at date n=0 before the start of the game. We
will however always assume that players are maximizing their stage game payoffs
(see condition (BR) below), as opposed to some possibly discounted sum of infinite-
horizon payoffs. Further, the shocks are assumed to be independent over time. In
this case, it does not matter whether player i observes her shock period-by-period, or
observes them all in one go at date 0.

The Bayesian game B of course also specifies ex ante subjective beliefs of players.
The additive shocks game I'*° is silent on beliefs, so we are free to include in B any
subjective beliefs to effect the embedding of I'*® into B. Once the additive shocks
game is expanded to include a rule for belief formation, an ex ante subjective belief
will emerge. If B and I'*™® share the same I and A, and if (11) and (12) hold, we shall
say that B embeds '™ or that B is a Bayesian representation of '*°.

4 Learning and Convergence to QRE: The Main
Results

Throughout this section we shall consider as fixed some given Bayesian game B =
< I,AT,v,{U}ser, {it* }icr, p* >. Given a (Borel) probability P on some metric
space X let Supp P denote the support of P. Player i is said to be (myopically) best-
responding to her beliefs if for each of her possible types 7 (v* — a.e.) her behavior
rule maximizes her expected utility at each date given her beliefs. In particular,

(BR) (Best Responding) For each i € 1, for v* — a.e. 7%, and after each
date N-1 history h € Hy_1,

Supp f/(r')(h) C Argmazgen [ ui(a'sa”mdu (.| 70h),  (13)

where the expectation above is with respect to the beliefs of player-type
7; conditional on the history h and is taken over the set of possible date
N actions, a ¢, of her opponents.

Given any two probability measures q and ¢’ on some metric space X, the measure
q is said to be absolutely continuous with respect to ¢ if for all Borel measurable
subsets DCX, q(D)>0 implies that ¢'(D)>0. We then write q<q'. We shall sup-
pose that our fixed Bayesian game B =< I, A, T, v, {U"}ser, {1t }ier, p* > obeys the
following the ex ante absolute continuity * condition.

4The absolute continuity assumption of Kalai and Lehrer (1993) is an ex post absolute continuity
assumption. Ex Post absolute continuity implies but is not implied by ex ante absolute continuity.
(See Nyarko (1998) for details.)



(AC) (Absolute Continuity) p* << p', Vi€ I.

Define
= Margu p*(e | hy 1), = H 7t and 7" = H ) (14)
il i
b, = Marg, i p'(e | hoo); (15)
g, = m,®b,; and (16)
vn = Margy (e | hnoi) (17)

where the first two marginals, 7!, and b, are taken over the set of date n actions
conditional on the date n-1 history h, ;. Specifically, 7, is the true ex ante date n
play of the players conditional on history h,,_; but ex ante to the revelation of types;
and b, is player i’s belief about her opponents conditional on date n history h,,_1,
which by assumption is independent of i’s type.

We will be providing results which say that beliefs become e— QRE. For this we
need a distribution in A whereas b}, € A™*. So we append to b, the measure 7, the
true ex ante distribution of i’s play, to obtain the tuple 3, = 7! ® b}, defined above,
which represents beliefs of player i about all players including herself. Finally, the
measure v, is the true marginal distribution over the type space T, again following
the date n history h,, ;.

We now state our main results:

Theorem 4.1A. Suppose that (BR) and (AC) hold.

(i)  (True play becomes e-QRE) On all sample paths excluding possibly a set
with zero p*—probability the following is true: Ye > 0, AN (which may depend upon
e and the sample path) such that ¥Yn > N,

mpisan €— QRE for T,=<I1,AT v, u, > . (18)

(i1) (Beliefs become e-QRE) Suppose now that either that there are two players or,
if there are more than two players, that any two players have the same beliefs about a
third player. Along any sample path define ' to be the common belief of players j # i
about player i’s date n actions given the date n history, and define 7, = ®;c 7. Then
on all sample paths excluding possibly a set with zero p*—probability the following is
true: Ve > 0, AN (which may depend upon e and the sample path) such that ¥n > N,

fpisane — QRE for Ty, =< I, A, T, vy, up > . (19)



The independence assumptions in the Additive Shocks Model imply that the '), =
<I1,A T, v,,u, > in the above theorem is independent of n and is what we referred
to as ['qqq. Further, the Additive Shocks Model satisfies some continuity properties
which enables us to strengthen part (ii) of the above by relaxing the common beliefs
condition. In particular, we have the following:

Theorem 4.1B. (The Additive Shocks Model) Let Tyqq be a static Additive
Shocks Model and suppose that 1'%, is embedded in B. Suppose that (BR) and (AC)
hold.

(i) (True play becomes e-QRE) On all sample paths excluding possibly a set with
zero p*—probability the following is true: Ye > 0, AN (which may depend upon & and
the sample path) such that ¥n > N,

Tpisan e — QRE for  Tugq. (20)

(it) (Each player’s beliefs become -QRE). On all sample paths excluding possibly
a set with zero p*—probability the following is true: ¥Ye > 0, AN (which may depend
upon & and the sample path) such that ¥Yn > N and for each i € I,

B is an € — QRE for T 4qy. (21)

5 The Details

This section will present the details and slightly stronger versions of our main results
above, as well as the intuition, proofs and some illustrative examples for those results.
We will use the definitions and assumptions of section 4, and again we consider as
fixed some given Bayesian game B = < I, A, T, v, {U"}icr, {1t bicr, 1 >.

5.1 Preliminaries

Our results will use the following well-known Blackwell and Dubins (1962) merging
of opinions theorem:

Proposition 5.1. (Blackwell and Dubins) Suppose the Bayesian game B obeys
(AC). Then ¥ e > 0 and on each sample path excluding a set with u* zero probability,
AN (which may depend upon € and the sample path) such that ¥n > N,

I b=, lI< e (22)
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5.2 Convergence of True Ex Ante Play

The following strengthens part (i) of our main result Theorem 4.1A, concluding that
we have an ¢ — O QRE rather than merely an ¢ — QRE.

Proposition 5.2A. (True play becomes ¢ — O QRE). Suppose that (BR) and
(AC) hold. Then on all sample paths excluding possibly a set with zero p*—probability
the following is true: Ye > 0, AN (which may depend upon ¢ and the sample path)
such that ¥Yn > N,

Tpisan e — 0 QRE for T,=<I1,AT v,,u, >. (23)

The intuition behind this result is straightforward. Player i’s actions are a best
response to her beliefs b,. From (22) it is easy to see that such actions are, for large
n, an € — optimal response to beliefs 7 *. By construction such actions generate 7,
so T, is an € — O QRE. The formal details of this proof, and all others, appear in the
appendix.

The above result uses our ¢ — O QRE concept. One may ask for the above result
to be stated in terms the e — P QRE concept. The ¢ — P QRE notion requires players
to be best responding to their beliefs and for beliefs to be within € of the truth. The
problem however is that the best response map is not continuous in beliefs. Small
changes in beliefs around a point of indifference may cause big changes in the best
response. Hence, as the example below demonstrates, the above proposition is false
when stated in terms of the ¢ — P QRE concept. Immediately after the example we
will indicate that for the Additive Shocks Model, this discontinuity disappears, so we
are able to obtain an ¢ — P QRE result for true play.

Example 5.1. (True play not e — P QRE). Suppose there are two players A and

B repeatedly playing the following normal form stage game:
B
Left Right
A Top 1,0 | 0,0
Bottom | 0,0 1,0
Suppose that A has a type space T 4 = [—1,1]®, and let v* be the infinite product
of uniform distributions on [—1,1]. Player B’s type space is degenerate (or there is
a single type of B). Given any type 74 = (14!, 74,...) Player A will choose at date
n action TOP (resp. BOTTOM) if T2 is positive (resp. non-positive). Player A’s
belief about B is that B will randomize with equal probability in an i.i.d manner
between actions LEFT and RIGHT at each date. The truth, however, is that Player
B chooses actions LEFT and RIGHT at date n with probabilities 0.5+6,, and 0.5-6,,
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where 6, > 0 for all n and 6,, — 0 as n— oo (in particular, Player B chooses LEFT
with a vanishingly tiny bit more probability than RIGHT). Player B knows the ex ante
probability, (1/2,1/2), with which A chooses her actions. Notice that both players are
best responding to their beliefs. Also note that if 6, converges to zero sufficiently fast
then the ex ante absolute continuity assumption can be shown to hold. The true ex
ante play, however, is the vector (m4,72) = ((1/2,1/2),(0.5+6,,0.5—46,)). The best
response for Player A against 75 = (0.5 + 6,,0.5 — 6,,) is the pure action TOP. In
particular, if a” is a best-response rule for player A, then A*(a?(72).))) = (1,0).
Hence || 72—A%(at(7B, ) |= 1| (1/2,1/2)—(0,1) ||= 1/2. The distribution (74, 75)
is therefore not an e — P QRE for any € < 1/2.

We now show that the discontinuity implicit in the above example does not obtain
in the Additive Shocks Model so we may conclude that true play is eventually an e— P
QRE. This result is therefore a stronger version of part (i) of our second main result,
Theorem 4.1B for the Additive Shocks Model, obtaining ¢ — P QRFE as rather than
merely e— QRFE.

Proposition 5.2B. (The Additive Shocks Model) Let Tyqq be a static Additive
Shocks Model and suppose that 155, is embedded in B. Suppose that (BR) and (AC)
hold. Then on all sample paths excluding possibly a set with zero p*—probability the

following is true: Ye > 0, AN (which may depend upon € and the sample path) such
that Yn > N,m, is an € — P QRE for Tguy.

5.3 Convergence of Beliefs

The proposition below indicates we may get a convergence result to e — P QRE’s for
the general (non-additive shocks) model if we state the result in terms of convergence
of beliefs as opposed to convergence of true ex ante play. This next proposition
assumes players start from the same beliefs about others. In particular, any two
players have the same beliefs about the play of a third player. The proposition
below is therefore a stronger version of part (ii) of our main result Theorem 4.1A,
obtaining an € — P QRE rather than merely an e— QRE.

Proposition 5.3A  (Beliefs becomes ¢ — P QRE). Suppose that (BR) and (AC)
hold. Suppose either that there are two players or, if there are more than two players,
that any two players have the same beliefs about a third player. Along any sample
path define 7' to be the common belief of players j # i about player i’s date n actions
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given the date n history, and define 7, = ®icr7',. Then on all sample paths excluding
possibly a set with zero p*—probability the following is true: Ye > 0, AN (which may
depend upon e and the sample path) such that ¥n > N, &, is an € — P QRE for
I, =<I,A T, v,,u, > .

Because of the continuity in the Additive Shocks Model even more is true: each
agent’s individual beliefs are e — P QRE’s. Hence, with the Additive Shocks Model
we do not have to impose the common beliefs assumption used in the previous propo-
sition. Notice that this result is a strengthening of part (ii) of our second main result,
Theorem 4.1B for the Additive Shocks Model, where we obtain an € — P QRE rather
than merely an e— QRE.

Proposition 5.3B. (The Additive Shocks Model) Let T,qq4 be a static Additive
Shocks Model and suppose that TS5, is embedded in B. Suppose that (BR) and (AC)
hold. Then on all sample paths excluding possibly a set with zero p*—probability the
following is true: Ye > 0, AN (which may depend upon € and the sample path) such
that ¥Yn > N and for each v € 1, ﬂ; isan e — P QRE for Tyq.

The results of this sub-section on beliefs will in general not be correct if we replace
e— P QRE with e — O QRE. In particular, even under the common beliefs assumption
used in the earlier proposition, beliefs do not become ¢ — O QRE. The latter requires
for all e > 0 the existence of a behavior rule profile {a'},_; which is e—optimal against
the beliefs 7,, and is such that an exact relation, #* = A*(a‘(7,*,.)), holds for all dates
n sufficiently large. In particular, for all large n, the beliefs that others have about
player i, 7, should be exactly equal to true play of player i, A’(a?(7,",.)). Although
learning occurs over time, in most cases there will never be a date n for which beliefs
equal actual play exactly. A simple example is provided below to illustrate this®.

’For an easy example not using the model with i.i.d shocks consider the following. ~Suppose
Player A has three actions. Suppose she plays her first action all the time. Player B assigns equal
probability to two kinds of behavior by A. The first kind of behavior of A is what A is truly doing
- playing her first action at all dates. The second kind of action is an equal randomization at each
date of each one of her other actions in an i.i.d manner. Hence at each date Player B’s beliefs will
assign positive probability to an action of A other than her first. Set the stage game payoffs so that
if A plays any of her other actions she gets a large disutility relative to choosing her first action.
Then the only e — optimal behavior rule for A is to choose the first action at each date, which will
result in play which is not the same as B’s beliefs at any date.
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Example 5.2. (Beliefs not e —O QRE’s.) Suppose there are two players, A and
B, and suppose B has only one action and one type. Suppose A has two actions TOP
and BOTTOM. The payoff to BOTTOM is zero. The date n payoff to TOP equals
A’s date n type, T2, which is uniformly distributed on the union of the two intervals
EA =[-5,-10] U [5,10]. Fiz any € < 5. It should be clear that the only & — optimal
action rule for player A is the same as the best-response rule, a: choose TOP if 4
€ [5,10] and to choose BOTTOM otherwise. In particular, any & — optimal action
rule will result in A choosing each of her two actions with equal ex ante probability
at each date. Suppose that B knows that A’s shocks at each date are generated in an
i.i.d manner from E4 (as they really are). But B does not know whether the common
marginal distribution is uniform on £ or is some other distribution, p** say. Player
B assigns equal probability to each of these two. Player B will, over time, learn the
true distribution of play of A, 2 (which is equal probability on each action at each
date in an i.i.d manner). This learning will however will in general be gradual. On
no finite date n will B’s belief about A’s true ex ante play, b2, be exactly equal to A’s
true ex ante play, 2. In particular, B’s beliefs will never be an ¢ — O QRE.

n

6 Conclusion

We have provided conditions under which repeated play and learning causes move-
ment toward a quantal response equilibrium. This provides some foundation for the
use of such equilibria.

The results of this paper have implicitly used many independence assumptions. In
particular, it has been assumed that (a) each player believes that others are choosing
actions independently of each other and their types are drawn independently of each
other and (b) each player chooses actions independently of others and (c) in the
Additive Shocks Model it is assumed that the shocks occur in an i.i.d manner. Parts
(a) and (b) can be relaxed along the lines of Nyarko (1994) and similar convergence
results may be obtained if we generalize the concept of a quantal response equilibrium
to some kind of correlated quantal response equilibrium.

We have argued elsewhere’ that the appropriate concept of convergence in many
repeated games with imperfect information is in terms of the ex ante (i.e., not con-
ditioning on realized types) or in terms of beliefs. The true play of players in the
repeated shocks model are typically pure actions since these are conditional on re-
alized values of the shock process. The quantal response equilibrium, on the other
hand, is usually an equilibrium in beliefs - it represents what players believe about
the ex ante distribution of play, ex ante to receipt of shocks to the utility. The ex
post play is not an equilibrium; the ex ante is. The convergence results obtained in

See Nyarko (1998) .
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this paper are of precisely that kind’, and show the convergence of ex ante play to
quantal response equilibria.

7 Appendix: The Proofs

7.1 Proof of Proposition 2.1.

Proof. Define, for each § > 0, O () to be the set of all distributions which are within
distance ¢ of some QRE:

O)={recA:|| m—7"||< 6 for some QRE 7"} . (24)

Suppose that the proposition is false. Then 36 > 0 such that Vk = 1,2,3,... , there
exists a %— QRE, 7, such that 7, ¢ O (5) . Since A is compact, we know that
{7} re; has a convergent subsequence, so without loss of generality we may suppose
that 7, converges as k— oo to some m,, € A. For each k, since 7 is a %— QRE,
there exists a profile of % — optimal action rules, ay, such that

1
[l — Ao, ) [|< - (25)
Fix any m=1,2,... , and recall that a, denotes an profile of best-response rules.
From the claim below we may conclude that
1
| Aag, ) — A, mx) ||< — for all k sufficiently large. (26)
m
From the continuity of A(ca,, ) in m we may conclude that
1
| Ao, ) — Ao, Too) ||< — for all k sufficiently large. (27)
m
The above three inequalities imply that
1 2 :
| T — A, Too) ||< z + — for all k sufficiently large. (28)
m

Taking k and then m to infinity implies that 7o, = A(au, 7o), SO T is a QRE.
Since 7 — T, this is a contradiction to the fact that 7, ¢ O (5) for all k, and
proves the proposition.

CLAIM: Fix any 7 and any 6 > 0. Then 32 > 0 and p>0 such that such that
for all ¢ < &, if a. is a profile of € — optimal action rules and m € A is such that
| 7 —7 [|< p, then

| A, m) — Ao, ) ||< 6. (29)

"Fudenberg and Kreps (1993) obtain convergence in the same ex ante sense.
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PROOF OF CLAIM: Fix any i € I. Order the action set A’ and write
A ={1,2, ..., #A'} . Let U* = R#4". Given any belief of i about her opponents, the
set U* is the set of possible vectors of expected utilities from i’s actions - in particular,

any vector X:{Ik}k#j; € U is a vector of expected utilities with x; the expected utility
to action k. Given any belief 7—¢ € A~ that player i could have about her opponents,
we define P? (77%) to be the distribution over the expected utilities of player i, ex ante
to observation of i’s shock e’: for any set C C U°,

p (fi) C)=r ({e c&: {/A Ul (k:,a*i, ei) dwi}k#j € C}) . (30)

We now define for each action K and each € > 0, the set D} to be the set of
expected utility vectors of player i such that action K is could be chosen under an
€ — optimal rule while some other action could be chosen by a best-response rule: in
particular, define

D; = {x = {mk}k#fl €U’ : Max {zr}iur = 2 > Maz{ay}y e — 5} and(31)
D* = UELDL (32)

The set D¢ above is the only set of expected utility vectors where the best-reponse
rule and € — optimal rule could prescribe different actions. Hence,

| Ao, m) — Alfai, 77 [|< PP () (D). (33)

Fix any 7 and any § > 0. The set D° has zero Lebesgue measure, so under the
Additive Shocks Model assumptions P? (77*) (D°) = 0. Since D¢ | D, we conclude
that for some & > 0,

P (77 (DF) < g. (34)

Under the Additive Shocks Model assumptions one may show that for fixed C
C U, P (%) (C) is continuous in 7~ and in particular Jp > 0 such that

. . _ , ) _ o . . , ,
| P* (71'*2) (D7) — P (7?*1> (D7) ||I< 5 for all 7" € A7 such that |7 * =77 ||< p.
(35)
Combining (33), (34) and (35)and noting that D¢ is decreasing in ¢ implies that

| A%(al, 77" — Al(al, 77") [|< 6 for all m such that || 77" — 7" ||[< p and Ve < &
(36)
From this we obtain the claim. m
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7.2 Proof of Proposition 5.2A.

Fix any ¢ > 0 and any sample path, excluding those for which (22) does not hold.
Let @ be the bound on the utility function u*. Let N be large enough so that (22)
implies that for all n> N,
. . €
by, — 7t ||< ——, 37
|| I< (37)
where #A is the cardinality of the action set A. Fix any such n.

Recall that {a!}, ; are the best-response action rules. Define the action rule o
by

S ol (bi 7.2') if bt = gt
Cpt ) = O, n |

¢ ( 7 ) {any arbitrary value if b # 7_* (38)
so that

o (W;i, Ti> =o' (b, 7") for v —a.e. 7' (39)

Since players are best responding to their beliefs, 7!, = A%(a’(b:,.)) so (39) implies
that

™, = Al(a’(m", ). (40)
Next, best-response behavior also implies that Va® € A°
[ e a < [ (el a ), (41)
A_; A_;

which from (37),

S R TACHUR SRR S AR (42)

—1

which in turn, from (39),
< i (= 7 a— AV da—t 4 e 43
_/Ai[un(oa (Fn,T),a T )dmt + e (43)

We have therefore shown that o is an € — optimal rule at 7,*. Combining this
with (40) proves the proposition.

7.3 Proof of Proposition 5.2B

Let {a’}icr be a collection of best-response rules. Players are best responding to
their beliefs so 7, =A"(a’(bi,.)). From (22)we know that ||bi-m,* ||—0. In the
the Additive Shocks Model, however, A*(c (b, .)) is continuous in b* (see Fudenberg
and Kreps (1993, Lemma 7.3)).  Hence, || 7-A'(ai(m;,?,.))||—0. From this the
proposition follows immediately.

17



7.4 Proof of Proposition 5.3A

Fix any sample path, any £ > 0, and any date n. By assumption agents are best
responding to their beliefs, so 7}, = A’(al(7,",.)). Eq. (22) therefore implies that
| 78, — A% (7,",.)) || < e forall iin I. This proves the proposition.

7.5 Proof of Proposition 5.3B

Fix any i€ I. Define ¢, = . and ¢/ = Margai(, for each jc I. We seek to show
that ¢, isan e — P QRE for T,4. Fix any j€ I. From (22) as n becomes large

¢ = = 0. (44)
By assumption players are best responding, so for all n,
m, = A (al(by, ). (45)

From (22) as n becomes large || 32 — 3% ||— 0 so || ¥, — (.7 ||~ 0. In the Addi-
tive Shocks Model, A?(al(b',.)) is continuous in b (see Fudenberg and Kreps (1993,
Lemma 7.3)), so as n becomes large

I A7 (0 (t],..)) = A (e(C,, ) = 0. (46)
From (44) — (46) we conclude that as n becomes large,
16 = A(ed(C, ) = 0. (47)

This implies that (,, is an ¢ — P QRE for I'y4.
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