
CHAPTER 6

Control of a linear regression process with
unknown parameters

Nicholas M. Kiefer and Yaw Nyarko

1 Introduction

Applications of forms of control theory to economic policy making have
been studied by Theil (1958), Chow (1975, 1981), and Prescott (1972).
Many of the applications are approximations to the optimal policy - sug-
gestions of how to improve existing practice using quantitative methods
rather than development of fully optimal policies. Chow (1975) obtains
the fully optimal feedback control policy for linear systems with known
coefficients for a quadratic loss function and a finite time horizon. Chow
(1981) argues that the use of control technique for the evaluation of eco-
nomic policies is possible and essential under rational expectations. The
use of optimal control for microeconomic planning is fully established.
An early analysis with many practical suggestions is Theil (1958). Opti-
mal control theory has also been useful in economic theory, in analyzing
the growth of economies as well as the behavior over time of economic
agents.

The problem of control of a stochastic economic system with unknown
parameters is far less well studied. Zellner (1971, Chapter 11) studied the
two-period control problem for a normal regression process with a con-
jugate prior and quadratic loss function. He obtained an approximate
solution to the problem and compared it with two other solutions - the
"here and now" solution, in which the agent chooses a fixed action for
both periods at the beginning of the first period, and a "sequential updat-
ing" solution, in which the agent chooses the first-period policy without
regard to its information value and then updates his beliefs on the basis
of first-period experience before calculating the second-period policy. The
sequential updating solution was studied further and compared with the
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106 Nicholas M. Kiefer and Yaw Nyarko

certainty equivalence rule by Harkema (1975). The optimal policy, as ex-
pected, yields a higher expected reward than the alternative policies. Pres-
cott (1972) developed an approximation to the optimal control solution
for a linear dynamic system with unknown coefficients, a finite horizon,
and quadratic loss. Chow (1975, Chapter 10) developed a control policy
for a linear dynamic equation system with unknown parameters, quad-
ratic loss, and a finite horizon but no learning about the parameters over
the period of control. Chow (1975, Chapter 11) provided an approximate
solution for the control problem with learning. Taylor (1974) examined a
simple regression case and considered asymptotic properties of estimates
and policies when an agent uses least-squares control policies (i.e., in each
period the agent chooses a policy as if unknown parameters were equal to
their current least-squares estimates). He found that the sequence of slope
estimates is consistent when the intercept is known. Anderson and Tay-
lor (1976), in work closely related to an example we carry through here,
presented simulation results for the least-squares control rule when both
the slope and intercept are unknown. They found apparent convergence
of the policy variable. Jordan (1985) followed up on this work by estab-
lishing conditions under which the sequence of parameter estimates ob-
tained by following the least-squares control rule are consistent. The re-
lated problem of maximizing an unknown function has been studied (see
Kushner and Clark 1978) without the parametric representation favored
in economics, where parameters are sometimes directly interpretable.

We study the problem of controlling a linear regression process with
unknown parameters. We use a stochastic control framework that makes
explicit the trade-off between current expected reward and the informa-
tion value of an action. An agent's information about unknown parame-
ters is represented by a probability distribution. The model is set up in
Section 2; Section 3 shows the existence of optimal policies. This chapter
concentrates attention on the sequence of "beliefs" held by the agent. Sec-
tion 4 shows that the agent's beliefs converge to some limit, which may or
may not be concentrated on the true parameter value. Proofs are given in
Section 5. Related results on the sequence of actions are given by Kiefer
and Nyarko (1986).

2 The model

In this section we sketch the general framework we wish to study. Let W be
a complete and separable metric space, F' its Borel field, and (fi',F',P')
a probability space. On (0', F\ P') define the stochastic process (e^00, the
shock process, which is unobserved by the agent. The shock process is
assumed to be independent and identically distributed, with the common
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Control of a linear regression process 107

marginal distribution p(et \ <t>) depending on some parameter </> in Rh that
is unknown to the agent. Assume that the set of probability measures
\p( * I 0)1 is continuous in the parameter </> (in the weak topology of mea-
sures) and that for any 0, J ep(de | </>) = 0. Let X, the action space, be a
compact subset of Rk. Define 0 = Rl x Rkx Rh be the parameter space. If
the "true parameter" is 6 = (a, 0, </>) e 0 and the agent chooses an action
xteX at date ,̂ the agent observes yu where

^ = a + |8x, + e, (2.1)

and where e/ is chosen according to p(-1 </>).
Let 0 be the Borel field of 0 , and let P ( 0 ) be the set of all probability

measures on ( 0 , 0 ) . Endow P ( 0 ) with its weak topology, and note that
P ( 0 ) is then a complete and separable metric space (see, e.g., Parthasa-
rathy 1967, Chapter II, Theorems 6.2 and 6.5). Let /xoe P ( 0 ) be the prior
probability on the parameter space with a finite first moment.

The agent is assumed to use Bayes's rule to update the prior probability
at each date after any observation of (xt9yt). For example, in the initial
period, date 1, the prior distribution is updated after the agent chooses
an action xx and observes the value of ylm The updated prior, that is, the
posterior, is then ixl = T(xuyl9fi0)9 where T:XxRlxP(Q)^P(Q) rep-
resents the Bayes rule operator. If the prior fi0 has a density function,
the posterior may be easily computed. In general, the Bayes rule operator
may be defined by appealing to the existence of certain conditional proba-
bilities (see Appendix). Under standard conditions the operator T is con-
tinuous in its arguments, and we assume this throughout. Any [xt,yt]
process will therefore result in a posterior process [fit], where, for all t =
1,2,...,

yt,nt_l). (2.2)

Let Hn = P(9)U?=l [XxRlx P(0)] . A partial history hn at date n is
any element hn = bi09 (xuyuiii)9...9 (xn-.uyn-i,iin-i))eHn; hn is said
to be admissible if equation (2.2) holds for all t = 1,2, ...,n — 1. Let Hn be
the subset of Hn consisting of all admissible partial histories at date n.

A policy is a sequence 7r={7r/}JL1, where, for each t>\> the policy
function irt:Ht^Xspecifies the date t action xt = TT,(ht) as a Borel func-
tion of the partial history ht in Ht at that date. A policy function is sta-
tionary if irt(ht) = g(fit) for each t, where the function #(•) maps P(Q)
into X. Note that fit can be regarded as a state variable at date t, contain-
ing all relevant information about the parameters provided by the partial
history ht.

Define (Q,F9P) = (e,e,ii0)(Q\F\P'). Any policy ?r then generates
a sequence of random variables [(xt(o))9yt(o))iiit((jj)}fLl on (Q9F9P)9 as
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108 Nicholas M. Kiefer and Yaw Nyarko

described above, using (2.1) and (2.2) (the technical details are stated in
the Appendix).

For any n = 1,2,..., let Fn be the subfield of F generated by the ran-
dom variables (hn, xn). Notice that xn e Fn but yn and iineFn+x. Next de-
fine 7 ^ = F~=o/V

We now discuss the utility and reward functions and define the opti-
mality criterion. Let u: X X Rl -• Rl be the utility function, and in partic-
ular, u(xt9yt) is the utility to the agent when action xt is chosen at date t
and the observation yt is made. We assume:

(A.I) u is bounded above and continuous.

The reward function n XxP(e) -+R1 is defined by

r(xt9 ji,-i) = Je j ^ u(xt,yt)p(det | 0)^-i(rfa d(3 d<j>), (2.3)

where yt - a. + $xt + et.
Let 5 in (0,1) be the discount factor. Any policy TT generates a sum of

expected discounted rewards equal to

VA^)=\ S 8^(^(0)),^-i(o)))P(rfco), (2.4)

where the (x,, /î ) processes are those obtained using the policy TT. A pol-
icy 7T* is said to be an optimal policy if, for all policies TT and all priors fi0

i nP (6 ) ,

VAHO)*VV(ILO). (2.5)

The processes (xt,yt) corresponding to an optimal policy are called opti-
mal processes. Even though the optimal policy TT* (when it exists) may not
be unique, the function V(n0) = VT*(^o) is always well defined and will be
referred to as the value function.

3 The existence theorem

We now indicate that stationary optimal policies exist and that the value
function is continuous.

Theorem 3.1. A stationary optimal policy g:P(9)^>X exists. The value
function Vis continuous onP(Q), and the following functional equation
holds:

\ , (3.1)

where jJLt = T{xtJyt,ixt_i) and yt = a + 0xt + et and the integral is taken
over QxR1.
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Control of a linear regression process 109

Proof: Let S = [/ : P(9) -> R \ f is continuous and bounded j . Define T:
S->S by

t (3.2)

where At^FC*:,^, JH0) a n d j ^ a + jStf+ej. One can easily show that for
w e S, Tw e 5; also, T is a contraction mapping. Hence, there exists a
feS such that v= Tv. Replacing w with v in (3.2) then results in (3.1);
and since v e S, v is continuous. Finally, it is immediate that the solu-
tion to the maximization exercise in (3.2) (replacing w with v) results in
a stationary optimal-policy function [one should consult Blackwell (1965)
or Maitra (1968) and Schal (1979) for the details of the preceding argu-
ments]. Q.E.D.

4 Convergence properties of posterior process

In this section the convergence properties of the posterior process {fit}
for arbitrary (i.e, not necessarily optimal) policies are studied.

The main results of this section may be described as follows. Proposi-
tion 4.1 shows that the posterior process always converges (in the weak
topology of measures) with probability 1. However, the limiting proba-
bility /*oo may or may not be concentrated on the true parameter. Propo-
sition 4.2 indicates that if there exists a strongly consistent estimator - be
this the ordinary least-squares (OLS) estimator, the maximum-likelihood
estimator, or some other - the posterior process necessarily converges to
the true parameter.

In Section 4.1 the model is simplified somewhat (in particular, assume
that the distribution of shocks is known and further that k = 1 so as to
have a simple regression equation y — a + fix+e). Under this simplifica-
tion, some characterization of the limiting distribution can be provided.
In particular, if for some o> in Q, xt(u) does not converge to a limit, the
limiting posterior distribution for that w in 0 is concentrated on the "true"
parameter value. Alternatively, if xt(o)) does converge to some JC(CO), say,
the posterior process converges to a limiting probability with support a
subset of the set {a\ fi': a' + (3'x(u) = a + fix(u)}, where a,/J represent
the "true" parameter values.

4.1 Convergence of [fit]

First we prove that under the very general conditions of Sections 2 and 3,
the posterior process converges for P almost everywhere (a.e.) w in Q to a
well-defined probability measure (with the convergence taking place in
the weak topology).
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110 Nicholas M. Kiefer and Yaw Nyarko

Note that for any Borel subset D of the parameter space 0 , if we sup-
press the GO'S and let, for some fixed co, iit(D) represent the mass that mea-
sure Ht(u) assigns to the set D9

= E[lieeD]\Ft]. (4.1)

Define a measure fi^ on 0 by setting, for each Borel set D in 0 ,

Hoo(D)=E[l{deD}\Foo]. (4.2)

The proposition that follows shows that fi^ is the limiting posterior dis-
tribution and is indeed a well-defined probability measure.

Proposition 4.1. The posterior process {[xt] converges, for P-a.e. co in Q,
in the weak topology, to the probability measure nn.

Recall P is the probability on Q. Define Pe to be the conditional dis-
tribution of P on Q given the value 6 in 0 . Here, Pd should be interpreted
as the distribution of histories - sequences {xt,yt} - given values of the
parameters of the regression equation and of the shock process 0. The
proof of the following proposition is due to Schwartz (1965, Theorem 3.5,
p. 14). Let le be the point mass at 0.

Proposition 4.2. Suppose there exists an F^-measurable function g such
that for iiQ-a.e. 0 in 0 , g(co) = 0, PQ-a.e. Then for /jiO-a.e. 0 in 0 , /^(co) =
le, Pd-a.e.

The existence of a strongly consistent estimator is equivalent to the
existence of a function g with the properties stated in Proposition 4.2.

4.2 Simple regression equation model

In this section a few simplifying assumptions are introduced to enable
some rather strong characterizations of the convergence properties of the
posterior process. These assumptions reduce the model to the situation
of a simple regression equation. In particular, suppose that condition (S)
holds:

Condition (S): The shock process has a distribution that is known to
the agent and possesses finite second moment; k= 1, so that the action
space X is a subset of R\

Proposition 4.3 shows that if the xt process does not converge, the pos-
terior process converges to the point mass on the true parameter value.
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Control of a linear regression process 111

Note, however, that nonconvergence of the xt process is not necessary for
convergence of \kt to point mass.

Let B= {co:^(co) does not converge), and recall that le is the point
mass at 8.

Proposition 4.3. For fio-a.e. 8 in 0 , the posterior process /*,(co) con-
verges to ldfor Pd-a.e. co in B.

Define on Bc, the set where x,(co) converges, x(o)) = \imt^QOxt(cx)). In
Proposition 4.4, it is shown that if the xt process does converge to x(co),
the posterior process converges to a limiting probability with support a
subset of the set {(a\ (3')i a' + f3'x(u) = a + j3x(co)}, where a, j8 represent
the true parameter values.

Proposition 4.4. For [io-a.e. 8 = (a, j8) in 0 , the posterior process /*,(co)
converges to a limiting distribution n^ (co) with support a subset of the set
{(a',&'): a'+ (3'x(o)) = a + (3x(a>)} for Pd-a.e.a) in Bc.

5 Proofs

Proof of Proposition 4.1

The proof may be summarized as follows: We use equation (4.1) to show
that for any Borel set D in 0 , iit(D) is a martingale sequence and apply
the martingale convergence theorem to show that jxt converges weakly to
/*«,. This argument does not assure us that the limit is a probability mea-
sure. However, the sequence of probability measures /x,(co) for fixed co is
tight, and Prohorov's theorem can be applied to deduce that ii^ is a prob-
ability measure.

A sequence of probability measures vn on 0 is said to be tight if, for
all e > 0, there exists a compact set Ke such that vn(K

e) > 1 — e for all n.
Claim 5.1 establishes the tightness of {/x,}.

Claim 5.1. For P-a.e. co in 0, the sequence of probability measures
{fit(o))} is tight.

Proof: Let Kr be the closed (compact) ball with center the origin and
radius r. It suffices to show that for P-a.e. co in fi,

l. (5.1)

However, using Chebyshev's inequality,
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112 Nicholas M. Kiefer and Yaw Nyarko

lit(e-Kr) = P(\0\>r\Ft)<E[\0\\Ft]/r,
so

(5.2)

One can check that {i?[|0| | Ft]} is a positive martingale sequence and
so converges to E[\\6\\ \ F*] (see, e.g., Chung 1974, Theorem 9.4.8, p. 340).
We assumed that /*0 has finite first moment, which implies that E[ \\ 0\\ ] < oo,
which in turn implies that E[\\6\\ \ F J < oo, P-a.e. Hence, sup, E[\\0\\ \ Ft] =
L< oo, P-a.e. Using this in (5.2) results in

inf^r)>l-sup£[|0||FJA = l-LA. (5.3)
t t

Taking limits as r-» oo then results in (5.1). This concludes the proof of
Claim 5.1. Q.E.D.

Proof of Proposition 4.1 (continued)

Let U be the subclass of F made up of sets of the following kind: First,
since 0 is separable, let {sus2,S3,...} be a separant; let B% be the ball of
radius \/n and center sk; then define (/as the set of all finite intersections
of the balls B%, where k- 1,2,... and n = 1,2,.... One may check that U
is countable.

Next, for any fixed set D, fit(D) = E[l^deD^ | Ft], so using Chung (1974,
Theorem 9.4.8, p. 340), the sequence {ixt(D)\ can be shown to be a posi-
tive martingale, and so the martingale convergence theorem applies, and
we conclude that iit(D) converges with P probability 1 to fioo(D). Since
the set U is countable, convergence holds on all of U9 simultaneously,
with P probability 1. Then we check that (/satisfies conditions (i) and
(ii) of Billingsley (1968, Theorem 2.2, p. 14), so, from that Theorem, \kt

converges weakly to /*«, with P probability 1.
Finally, from Claim 5.1, for P-a.e. a> in 0, the sequence of posterior

distributions is tight. Hence, using Prohorov's theorem (see, e.g., Bill-
ingsley 1968, Theorem 6.1, p. 37), we may conclude that fi^ is a probabil-
ity measure (P-a.e.). Q.E.D.

Proof of Proposition 4.2

A stronger version of this proposition is stated and proved later in Lem-
ma 5.4.

Comment on Proof of Proposition 4.3

The idea behind the proof of Proposition 4.3 is the following. Suppose
first that xt(u) =x' for all t and for all co. Then yt(u) = a
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Control of a linear regression process 113

and yE?=lyt(G>)/n = a + l3x' + 12l
/f=l€t/n. However, by the strong law of

large numbers, r i m ^ ^ 2?=ie,/>2 = 0, P-a.e., soy' = a + (3x' if we define
y' = lim^^ oo S?= i yt(u)/n\ in particular, the agent will learn that the true
parameter will satisfy this relation in the limit. Next, if xt(u) does not
converge but alternates between two numbers xf and x\ it is obvious that
applying the preceding argument first to the even sequence {x2t}T=\ and
then to the odd sequence {x2t-\}T=h the two equations y' = a + (3x' and
y" = a + f}x" will be obtained, where j>' = 2r=i ylt and ^ = 2J°=i^2/-b
from which one may compute the true parameters a and j8. In this situa-
tion the agent will learn the true parameters in the limit. This idea is be-
hind the proof of Proposition 4.3.

In the preceding example, the law of large numbers had to be applied
first to the even time subsequence and then to the odd subsequence. In
Lemma 5.1, it is shown that the law of large numbers may be applied to a
very large set of time subsequences. As indicated in Lemma 5.3, using the
result of Lemma 5.1, one can compute the true parameter in a manner
very similar to that explained in the preceding example (i.e., by solving
two simultaneous equations involving the true parameters a and /3). Lem-
ma 5.4 states that if the true value can be computed, beliefs converge to
point mass at the true value.

Proof of Proposition 4.3

Define l^e/^ equal to 1 if {GO e K] and equal to zero otherwise, where K is
any subset of Q. For any 1 < m, define

= k]

if the set in brackets, {•}, is nonempty and equal to infinity otherwise.
Notice that for each k, Nk(u) is a stopping time, that is, {co: Nk(u) = t}e
Ft for each t.

Lemma 5.1. There exists a set A in F with P(A) = 1 such that for all ra-
tional numbers 2 and m, with £<m, and for all

1 k()
lim - 2 et(a)l{txxMxm] = 0, (5.4)

where the Nk are those corresponding to the I and m.

Proof: Fix an i and m with I < m. For ease of notation, drop the w's
in the random variables e,(co) and x,(co), and define, for fixed I > m> lt =
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114 Nicholas M. Kiefer and Yaw Nyarko

If, for some s< oo, Nk(cj) = oo for all k>s, then
NkM s

2 eth= 2 M/<°° for all k>s,
t=\ t=\

and (5.4) follows immediately. If Nk(o)) < oo for all k, then 2f=i 1/ -+ °o
and

limi 2 e,l,= l im^p. (5.5)

Since for J '> ,̂ e^ is independent of {l l f . . . , 1,}, (5.4) follows from (5.5)
and Lemma 5.2 due to Taylor (1974).

Hence, if for fixed I and m with i < m, A(l, m) denotes the set on which
(5.4) holds, P(A{2, m)) = 1. Define A to be the intersection over all ra-
tional numbers I < m of the sets A(l, m)\ then P(A) = 1, and A satisfies
the conclusion of the lemma. Q.E.D.

Lemma 5.2. Let [vt] be a sequence of independent random variables
with mean zero and uniformly bounded variance. Let {zt} be a sequence
of random variables such that for each t, t' with t' > t, yt> is independent
of Ui , . . . , zt}\ then for almost every realization with 2f=i z?-> °°,

lim ^ ^ = 0. (5.6)

Proof: One applies Taylor (1974, Lemmas 1-3) with minor modifica-
tions. Q.E.D.

In Lemma 5.3, on the set where xt does not converge, there exists a
consistent estimator for the true parameter.

Lemma 5.3. There exists an F^-measurable function g such that g(oi) =
0, Pd-a.s. on the set where xt does not converge, that is, such that if B is
the set where xt does not converge,

Pd(io):g(a>) = 6}nB) = Pd(B). (5.7)

Proof: Construct such a function g. To ease the exposition, assume that
X= [0,1]. One may check that, since X is assumed compact, this simpli-
fying assumption is without loss of generality.

Let Q be the set of rational numbers in X, and let x(o)) = lim sup xt(o))
and x(co) = liminf xt(u). Proceed to define two random variables /z(co)
and h'(a)) taking values in Q and such that x(u) < h'(u) < h(o))<x{a)).
Define the function h: X x X-* Q as follows. First, any integer k = 1,2,...
can be uniquely written as k = 2n+l + p, where n = 1,2,... and 0 < p <
2n+l-1; so define sk = (2p + \)/2n, where k = 2n~l+p. The sequence [sk]
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Control of a linear regression process 115

is therefore a sequence of rational numbers in X— [0,1]. Define t(x, x') =
\nf{k'-ske [x.x']} if x<jc'and t(x9x') = 0if x>x'; and h(x9x

f) = st{xtX^
with s0 — 0. Hence, h takes values in Q, and one can check that h is Borel
measurable. [In fact, to prove the measurability of h, note that t(x> xf) =
l{x<x'} S?°=i rf> where rt is the indicator function that equals 1 when ske
[x, x'Y for all integers k < t and st e [x9 x

f] and zero otherwise (with rx =
1). Because 1[X>X>) and rt (for each t) are Borel measurable, we obtain
the measurability of t(x,x'); the measurability of h then follows from

Next, we define the random variable /z(co) = /z(x(co),x(w)) (note the
abuse of notation!). Since x and x are both F^-measurable and h(x, xf) is
Borel measurable, we obtain that /i(oo) is F^-measurable. We have there-
fore constructed an F^-measurable random variable h(u) taking values
in Q and such that on B, x(o)) < h(o))<x(oo). By replacing x(w) with h(u)
and repeating the preceding construction, we obtain an F^-measurable
random variable /*'(co) taking values in Q and such that on B9 x(w) <

We now need some notation and a few definitions to construct the func-
tion g. Let

r inf{/i:S?= 1T / = it} if well-defined,
^ otherwise;

1 ^ 1 ^* \ ^k _
*k = -r S Jf/T/5 J* = T: 2 ^T/5 ^ T S e,T,. (5.8)

^ t = \ K t = \ K t = \

Define Nk9 Xk, Yk, and ek in a manner similar to Nk9 Xk, Yk, and ek but
replace^ withI^IIO^A:,</! ') . Finally, define g: 12->0by g(co) = (0,0) on
5 C and g(co) = (ga(w), g^(co)) on B, where (dropping the co's for clarity)

««= lim *kf-*k'Tk and ^ = lim | ^ . (5.9)

The remainder of the proof is devoted to showing that the random
variable g just constructed is well defined and satisfies the conclusions of
the lemma.

Recall that B = (o;:x(a;) < Jc(w)}. On B, notice that Xk < h! < h <
Xk, Nk(<a) < oo, and Nk(ca) < oo for all k sufficiently large. Because yt =

1 *k I *h_ 1 Rk _ I # *

K t = \ K t = \ K t = \ fC t = \

One can check that (l/k)^llt = 1 for all k. Hence, (5.10) becomes

? (5.11)
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116 Nicholas M. Kiefer and Yaw Nyarko

Similarly, one can show that

Yk = a + pXk + ek. (5.12)

Solving (5.11) and (5.12) for 0 yields

o_ (Yk-Yk)-(tk-tk) (5 13)
Xk—Xk

Let A be the set where the conclusion of Lemma 5.1 holds, so that P(A) =
1. For any fixed 0 = (a, 0), let Ae be the set of co's in A whose first coordi-
nate is 6 (recall U = 00')- On the set A, since h and h! are both rational
numbers, both ek and ek tend to 0 as k-> oo. Hence, on ^ f l i ? , taking
limits on (5.13) leads to

18= Hm ^ I r - (5.14)

By a procedure similar to that used in deriving (5.14), one obtains, on
AeOB,

(5.15)

From (5.14) and (5.15), for all o) in AdnB, g(w) = fl. But Pe(Ae) = 1.
Hence, Ptf({«:g(co) = 9)05) = Ptf({w:g(«) = 9 ) 0 ^ 0 5 ) = P t f (^nf i ) =
PQ(B). Since, clearly, geF^, this completes the proof of Lemma 5.3.

Q.E.D.
The final step in the proof of Proposition 4.3 involves showing that on

the set where there exists a consistent estimator for the true parameter,
the posterior distribution will converge to point mass on the true parame-
ter. Since Lemma 5.3 implied the existence of a consistent estimator on
the set B, Lemma 5.4 concludes the proof of Proposition 4.3.

Lemma 5.4. Suppose there exists an F^-measurable function g and a set
such that for no-a.e. 6 in 9,

Then for fid-a.e. 6 in 0,

Pe(io:pao(a) = le]nB) = Pe(B), (5.16)

where le is the point mass at 0.

Proof: To make things precise, in particular to indicate that the true
parameter can be considered a random variable (with distribution /x0), let
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Control of a linear regression process 117

TT(CO) e 9 be the projection of w e Q = 0fi ' onto its first coordinate, 0 . De-
fine C= {co: />t^(co)^l7r(w) in the weak topology} and Cd = {oi:
in the weak topology}.

We seek to show that for /iO-a.e. 6 in 0 ,

Pd(B). (5.17)

Now,

and P(B) = \QPe(B)po(d0). (5.18)

To prove (5.17), it suffices to prove that

P(CHB) = P(B). (5.19)

For if (5.19) holds, using (5.18) yields

Pd(CdnB)ljiO(d0) = j e Pd(B)n0(d6), (5.20)

which implies, since Pd(CdDB)<Pd(B) for all 0, that (5.17) holds.
We have shown in Proposition 3.1 that P({oo' JH,(O;)-»JII00(G;) in the

weak topology}) = 1. Hence, to prove (5.19), we need to show that if D is
any Borel subset of 0 , and we denote by /ioo(Z))(w) the mass that the mea-
sure fioo(o)) assigns to the set D, then

}(a>e5} ^ " ^ . e . (5.21)

Using the definition of g and B9

(5.22)

Noting that BeF^ and geF^, if D is any Borel subset of 0 (by defini-
tion of /Xoo, dropping the w's for ease of exposition),

fioo(D)i0})l{0)eB]=E[l{irED]\Foo]lB

= £[1^^1*1^] [sincetfeFJ

= E[l{gED]\B\Foo] [using (5.22)]

= hgeD)h l s i n c e 8 and .SeFoo]

= l{TeD]-lB P-a.e. [using (5.22)].

This proves (5.19) and completes the proof. Q.E.D.
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118 Nicholas M. Kiefer and Yaw Nyarko

Proof of Proposition 4.4

Define on Bc,

x(o))= lim xt(u).
t-+oo

We will indicate below that for P-a.e. co in Bc,

1 n

J>(co) = lim - 2 yt(w)
„_>«> ft t = \

is well defined. Let M(co) = {(«', &') e 0 : a' + P'x(<a) =^(co)}. The proof
of the proposition is complete if we show that for P-a.e. co in i?c,

7r(co)eM(co) and /i00(M(co))(co) = l, (5.23)

where for any Borel set D in 0 , we define />t0O(JD)(w) to be the mass as-
signed to the set D by the probability measure /*«>(<*>)•

Remark: First note that for each co, M(co) is a closed subset of 0 and
is hence a Borel subset of 0 . Next,

is clearly in F since Bc, TT(OJ) , JC(CO) , and j>(a>) are in F; hence, the random
variable />t00(M(co))(co) = £'[l(7r(a;)eM(w)} | F^} is F-measurable. The expres-
sions in (5.23) are therefore all well defined.

Since yt(u)) = a(u) + l3(a))xt(u) + et(a)), where (a(a>), j3(a>)) = 7r(a>),

- S ^ ( « ) = «(co) + j8(co)- S ^ ( « ) + - S €,("). (5.24)

From the strong law of large numbers,

1 n

lim — S ^ = 0 P-a.e.
n_oo n t=\

(see, e.g., Chung 1974, Theorem 5.4.2, p. 126). Hence, taking limits in
(5.24), we obtain, for P-a.e. co in Bc,

j(co) = a(co) + j3(co)jt(co) P-a.e. (5.25)

[Notice that this implies that P-a.e.j>(co) is well-defined whenever x(u)
is.] From (5.25), 7r(co)eM(co) for P-a.e. co in Bc.

Next, 7r(co)eM(co) for P-a.e. co in Bc implies that l{7reM(co)}'̂ 5c = ^Js
c

P-a.e.; hence, noting that l
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Control of a linear regression process 119

= E[lBC\Foo] = lBCP-a.e. (5.26)

This shows that (5.23) holds and concludes the proof. Q.E.D.

Appendix

Bayes rule operator

Let P(dyt d6\xt,iit_{)bz the joint distribution on Rl x 0 obtained as fol-
lows: An element 0 in 0 is first chosen according to the probability iit-\\
then, given this chosen value of 6 = (a, (3, </>), yt is chosen according to the
relation yt = a + $xt + et, where et has the distribution p( • | <j>). Next, de-
fine P(dyt | #„ /x/_i) to be the marginal distribution of P(dyt dd\xt9fJLt~i)
on R\ We now apply Parthasarathy (1967, Chapter V, Theorem 8.1) to
obtain the existence of a conditional probability measure on 0, T(d$\
xt9yt,iit_i)9 which, for fixed (xtifit_i), is measurable in yt9 and where

The conditional probability T(dd \ xt,yt, /x/_1) defines the Bayes rule op-
erator

Random variables {xt,yt,iit}

We now provide technical details behind construction of the {xt,yt,fit}
processes. Recall (fi,F,P) = (0, 0,/>to)(fi/,F/,P'). Any policy TT gener-
ates a sequence of random variables {(xt,yt,iit}?=x on (Q,F,P) as fol-
lows: First consider {e,} as a stochastic process on (0, F, P) rather than on
(Uf,F\Pf) by et(u) = e,(co'), where co' is the second coordinate of w (re-
call fi = 0 x W). Here, /x0 is given a prior; define Jti(co) = 7ro(^o), ^I(CO) =
a +13x^0)) +ei(u), and />t1(co) = r(x1(a;),^1(oo),/>to), where a and |8 are
obtained from the first coordinate of co (recall 0 = 0 x 12'). Since both TT0

and F are Borel functions (recall F is continuous), observe that xu yi9 and
pix are (Borel measurable) random variables on (Q,F,P).

Next, suppose that the random variables xh yh and /x, have been de-
fined for / = 1,..., t — 1; then we may define, inductively, xt9yt, fit by put-
ting ht(o)) = (fi0; (^ (w) ,^^) , /*^") ) , . . . , (^- l tw) ,^- .^^) ,^-^^)) )
and

Since irt is Borel measurable, xt,yt, fit are (measurable) random variables.
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