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Summary. I study the question on the convexity pf the value function and Black well 

(1951)'s Theorem and relate this to the uniqueness of optimal policies. The main 

results will conclude that strict convexity and a strict inequality in Blackwell's 

Theorem will hold if and only if from different priors different optimal actions may 
be chosen. 

I. Introduction 

I study the question of the convexity of the value function and Blackwell's Theorem 

(1951) and relate this to the uniqueness of optimal policies. The main results will 

conclude that strict convexity and a strict inequality in Blackwell's Theorem will 

hold if and only if from different priors different optimal actions may be chosen. 

The principal purpose of this paper is to provide simple and accessible proofs to 

economists of the above results. Most of the proofs of these results in the literature 

either use special assumptions (e.g., finiteness of the set of signals and/or states); or, 
because of a greater interest in maximal generality, they rely on arguments which 

make them inaccessible to many economists. For further work on the convexity of 

the value function and Blackwell's Theorem see Kihlstrom (1984) or LeCam (1964). 
For applications in economics see Rothschild (1974), Grossman et al. (1977), Kiefer 

and Nyarko (1989), and Nyarko (1991). 

II. The decision problem 

An agent does not know the true value of a parameter 6, in a parameter space 0. 

The agent's (prior) beliefs about 9 in the first period, date 1, are represented by the 

prior probability ju0 over 0. The agent must choose at each date t an action at in 

an action space A. The action results in an observation (or signal) yt in the set Y, 
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with probability distribution P(dyt\at, 9) which depends upon both the action at and 

the parameter 9. The action and observation result in a date t utility of u(at, yt). We 

suppose that 0, A and Y are complete and separable metric spaces. Given any 
metric space S we let @>(S) denote the set of all (Borel) probability measures on S. 

??(S) will, unless otherwise stated, be endowed with the topology of weak 

convergence (see Billingsley (1968) for more on this). Suppose that at some date t 

the agent begins the period with beliefs about the parameter 9 represented by the 

posterior probability pt.x. The agent uses the observation yt resulting from the 

action at to update the posterior via Bayes' rule (i.e., the laws of probability). We 

let B.A x Y x 0>(0)^>0>(0) be the Bayes' rule operator, so that for all t > 1 

/if = 
B(flf,j;f,|if_1) (2.1) 

H.a. Histories and policies 

A date n partial history is any sequence of observations, actions and prior 

probabilities at all dates preceding n; i.e., hn = 
(p0,{(at,yt,pt)}ntZ{)e&{0) x nntl{ 

IA x Y x ^(?)] 
= 

Hn. A policy is a sequence n = 
{nt}^=l, where for each t > 1, 

nt:Ht-+A specifies the date t action at = 
nt(ht), as a (measureable) function of the 

partial history. We let D denote the set of all policies. Any policy, n, given initial 

beliefs p0, then generates a sequence of actions, observations and posterior beliefs, 

{(at,yt,pt-1)}?Ll, via the conditional probability P{dy\6,a) and the Bayesian 

updating rule (2.1). Any policy n results in a sum of expected discounted rewards 

with discount factor <5e(0,l), Vn(pQ) = 
E[_YdT=^t~1^{^yt)\Po^\ We define the 

value function by V(p) 
= 

SupnGD Vn(p). A policy is optimal if it attains this supremum. 
We assume the existence of an optimal policy and we assume the utility function is 

uniformly bounded so our value function is well defined. (See Kiefer and Nyarko 

(1989) for conditions which ensure this and for other details.) 

Il.b. *-Policies 

We define a date n *-partial history, h*, to be any sequence of past actions and 

observations (i.e., the same as date n partial histories without a specification of the 

history of posterior beliefs); i.e., any h* = 
{(at,yt)}"~leT\"llA 

x Y = H*. A date n 

*-policy is any function n* :H* - A and a *-policy is any collection of date n policies, 
n* = 

{n*} = x. Let D* denote the set of all ^-policies. At date one there is no history 
so h\ is a "null" history and 7r* is identified with an action (i.e., n\eA). Any parameter 
value 6 and *-policy n* generates the sequence of actions and observations, 

{an,y?} =1, defined inductively via the following relations: 

ax 
= 7T*, yx ^P(dy\0,al) and given the *-partial history h*, an 

= 
n*(h*) and 

yn 
~ 

P(dy\9,an), where by the notation yn 
~ P we mean that yn is a random variable 

with distribution given by the probability P. n* and 9 also generate a conditional 

expected discounted sum of returns 

Un*, 0) 
= 

El^:=1?n-'u(an9yn)\9,n^ (2.2) 

Recall that a date n policy as defined in section H.a. is allowed to be a function 

also of the history of posterior distributions. Hence every *-policy may also be 
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considered a policy, but not vice versa. However, a fixed prior p and policy n 

"induce" a *-policy as follows: Define 7r* = 
n^p); for any n > 2, any *-partial history 

h* will generate via Bayes' rule (2.1) a unique sequence of posteriors {pt}?=i and 

hence a unique partial history hn; so define n*(h*) 
= 

n?(hn). The constructed *-policy, 
n*, will generate the same sequence of actions and observations as the policy n from 

fixed initial prior p. (Of course, a *-history, h*, is any member of H*, and in 

particular may not be consistent with Bayes rule (2.1) from initial prior p. Such 

*-partial histories have a zero probability of being observed under the fixed prior 
p and policy n. At such *-partial histories, h*, we are free to arbitrarily define the 

corresponding date n *-policy, n*.) 
It should be fairly obvious from the above constructions that for an agent with 

fixed prior p, choosing a policy is equivalent to choosing a *-policy. The argument 
is as follows: Every *-policy may be considered a policy 

- one which is independent 
of the posteriors. Hence choosing a policy (as opposed to a *-policy) can not result 

in lower sum of discounted payoffs. Further, for fixed prior, we argued above that 

any policy induces a *-policy which results in the same distribution of actions and 

observations, and hence the same payoffs. So, for fixed prior, for each policy there 

exists a *-policy which attains the same sum of discounted payoffs. This shows the 

required equivalence. Now fix any policy n and initial prior p and let 7i** be the 

*-policy induced by n and p. We may therefore conclude that 

Vn(p) = 
\L(^,9)p(d9) (2.3) 

and 

SuPneD VM = V(p) = 
Sup^^f L(n*9 9)p(d9) (2.4) 

Any *-policy that attains the supremum on the right-hand-side of (2.4) shall be called 
an optimal *-policy for the given initial prior, p. 

III. The (weak) convexity of the value function 

Let M be the vector space of all finite signed measures on the parameter space 0 

endowed with the total variation norm defined by \\p\\ =SupJ//(v4)|, where the 

supremum is over measureable subsets A of 0. For any *-policy, n*9 and any peM9 
we may define (with a slight abuse of notation - see (2.2)): 

L(n*9p) = 
?L(n*99)p(d9). (3.1) 

Note that the function L(7r*, p) is a function of p only directly through the second 

argument and not indirectly through n*9 (which is indeed why we work with *-policies 
as opposed to policies)! The lemma below is easy to check and implies Proposition 3.2, 
the convexity to the value function. 

Lemma 3.1. (a) L(n*9p) is linear in p for fixed *-policy n*. (b) L(n*,p) is continuous 

on M under the total variation norm, uniformly in n*'9 i.e.9 3K > 0 such that for all p' 
and p" in M, Supff*6D.|L(7r*,/0 

- 
L(tt*,//')| < K \\p' 

- 
p" ||. 

Proposition 3.2. The value function V is (a) continuous on M when M is endowed with 

the total variation norm and (b) convex on M. 
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Proof. The value function, V9 can of course be defined on the set of finite signed 
measures Ai (as opposed being defined on the set of probability measures) e.g., by 

(2.3) and (2.4). From (2.4) and Lemma 3.1(b) it is easy to check that V is continuous. 

Further, it is easy to check that the supremum of an arbitrary collection of linear 

real-valued functions is convex. Hence from (2.4) and the linearity of L(n*9 p) in p 
we conclude that the value function is convex. 

IV. Strict convexity of the value function and uniqueness of optimal actions 

We now show that the value function is NOT strictly convex between two priors if 

and only if all the priors in the convex hull of those two priors share a common 

optimal *-policy function. In particular, if one can check that all the priors in the 

convex hull of two priors do NOT share a common date one optimal action then 

the value function must be strictly convex between those two priors. 

Proposition 4.1. Fix any p'9 p"eM and ke(091 ). Denote their convex hull by C(p\ p") = 

{/?eM|30e[O,l] s.t. /i = 
#' + (l-#"}. Then K(V + 0 -k)p") 

= 
kV(p') + 

(1 
? 

k)V(p") if and only if 3a *-policy n*9 such that from all initial priors peC(p'9p")9 
n* is an optimal *-policy from that prior p. 

V. The comparison of experiments 

Any action and observation combination (a9y)eA x Y provides information on the 

unknown parameter 9 and hence may be referred to as an experiment on 9. We shall 

say that Experiment A is sufficient for Experiment B if the observation in 

Experiment B is the observation of Experiment A perturbed by some noise. 

Formally we have: 

Definition 5.1. Fix any actions a and ? in A and let y and / denote the observations 

resulting from those actions. The experiment P(dy\a9 9) is sufficient for P(dy'\a!9 9) if 

there exists a conditional probability M(dy'\y) (of / conditional on y) such that 

P(dy'\a\9) 
= 

M(dy'\y)-P(dy\a99) for all 9 in 0; i.e., for any bounded (measurable) 
function g.Y^R and any 9e09 $Yg(y')P(dy'\a,99) 

= 
lYjYg(y')M(dy'\yyP(dy\a99). 

In particular, if y*' is the random variable generated via M(dy*'\y)-P(dy\a9Q) then 

conditional on 0, / and y*' have the same distribution. 

Example 5.2. Suppose A and 0 are both subsets of the real line and y = 9a + e with 

e normally distributed with zero mean and unit variance. Fix any a and a'eA with 

\a\ > \a'\ > 0. Then one may show that P(dy\a99) is sufficient for P(dy'\a\9)9 with 

y*' 
= 

(ya'/a) + e* where e* is independent of e and normally distributed with mean 

zero and variance equal to [1 
? 

(a!/a)2']. 

Proposition 5.3. (Blackwell's Theorem). If the experiment P(dy\a99) is sufficient for 

P(dy'\?,9) then Vpe&(0), \e>iYV(B(at9y'9p))P(dyt\a\9)p(d9)<\BxYV(B(a,y9p))' 
P(dy\a99)p(d9). 

VI. The 'strict comparison' of experiments 

We seek to determine when the inequality in Proposition 5.3 can be made strict. 

As one may guess from Proposition 4.1, the conclusion will be of the form that 
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Proposition 5.3 holds with equality if and only if the actions from the two 

experiments are somehow the "same." Fix the initial prior p and let P(dy\a,9) be 

sufficient for P(dy'\a', 9). Let y*' be as in the definition (5.1) of sufficient experiments. 
Let Q denote the joint probability distribution of y*', y and 9 generated by letting 
9 have distribution p, letting y have distribution P(dy\a99)9 and letting y*' have 

distribution M(dy*' \ y); (i.e., given any real-valued function/ on Y x Y x 0, J fdQ 
= 

ir x yx ef(y*\y,0)M(dy*'\y)P(dy\a99)p(d9)). Suppose that at date one, two initially 
identical agents with the same prior p choose the actions a and ? respectively. Upon 

making their observations, y and / respectively, they will choose date 2 actions 

given by a2(y) and a'2(y') respectively. Let af(y*') be the optimal date 2 action of 

the agent who observes only y*'. Given any probability P on a metric space let Supp 
P denote the support of P (i.e., the smallest closed set with P-probability one). Then 
we have, 

Proposition 6.1. Suppose Proposition 5.3 holds with equality. Then Q-a.e.9 (a) 

Q({a2 
= 

a2*,}\y*') 
= 1 for all y*'; (i.e., outside of a set of (y,y*') values with Q 

probability zero, for all y*', a2(y) 
= 

a'2(y*') for all yeSupp?(|>>*')), and (b) a2 and 

a'2 have the same distribution conditional on 9; i.e., ifC is any (measurable) subset of 
the action space A then Q({a2tC}\9) 

= 
Q({a2eC}\9)V9. 

Remark. Suppose that the observations take values on the real line and that the 

conditional probability M(dy*'\ y) and the marginal distribution on Y of Q, both 

admit strictly positive density functions, q(y,y*') and q(y) respectively (as in 

Ex. 5.2). Then using Bayes' rule it is easy to see that the marginal distribution on Y 

of Q(-\y*') has a strictly positive density function given by q(y,y*')/q(y). Then 

{yeSuppQ(dy\y*')} 
= Y. Proposition 6.1(a) concludes that there is a common 

action which is optimal from all observations y. Hence, if the utility function of the 

agent is such that different observations of y lead to different optimal actions, 

Proposition 5.3 must hold with strict inequality. 

Appendix: The Proofs 

Proof of Lemma 3.1. (a) Obvious, (b) Given any peM define /x+ and p~ to be, resp., 
the positive and negative parts of p; then both p+ and /i" are non-negative measures 

and p = 
p+ 

? 
p~ (see Dunford and Schwartz (1957)). By assumption the utility 

function is uniformly bounded so we may suppose without loss of generality that 

L(n*99) is non-negative and bounded above uniformly in (n*,9) by some K >0. 

Then for any *-policy n*, and any p', p"eM, 

|L(7T*,//) 
- 

L(7T*,/i")l 
= 

|L(7T*,/l' 
- 

p")\ 
= 

|?L(7Z*,9)d(p' 
- 

//')l 
= | J L(n*, 9)d(p' 

- 
p'Y 

- 
JL(tc*, e)d(p' 

- 
pT I < JL(n*, 9)d(p' 

- 
pT)+ 

+ L(7r*, MW 
- 

/i")" < Kl(p' 
- 

p'Y(?) + (P' 
- 

PT(0)H < 2K || p' 
- 

p" || 

which implies part (b) of lemma. 

Proof of Proposition 4.1: Suppose there exists //, p"e&(0) and a Xe(Q, 1), such that 

V(Xp' + (\-X)p") 
= 

XV(p') + (\-X)V(p"). Let n* be any *-policy optimal from 

initial prior Xp' + (1 
- 

X)p". Then V(p') > L(n*, p') and V(p") > L(7i*, p"). Suppose, 
per absurdum, that from one of the priors p' or p", the *-policy n* is not optimal; 



308 Y. Nyarko 

then one of these inequalities hold strictly. Then, 

V(kp' + (1 
- 

k)p") = kV(pf) + (1 
- 

k)V(p") > kL(7t*9p') + (1 
- 

k)L(7i*9p") 
= 

L(n*9 kp' + (1 
- 

A)//') 
= 

V(kp' + (1 
- 

A)//'), 

a contradiction. Hence the *-policy rc* is optimal from initial priors p' and p". Now 

fix any 0e[0,1] and suppose that from initial prior <?>p' + (l 
? 

(j))p", n* is not 

optimal. Then V((?>p' + (1 
- 

0)ji") > L(n*,<t>p' + (1 
- 

(?>)p") =>L(k*,/0 + 

(1 
? 

(?))L(7t*9p") 
= 

(?)V(pf) + (1 
? 

0)K(//') which is a contradiction to the convexity 
of V. This proves the "only if" part of the proposition. 

Next, for fixed probability measures p' and p" on 0 suppose that there exists a 

*-policy 7T*, such that from all initial priors p in C(p'9 p"), n* is an optimal *-policy 
from that prior. Then for all such p9 V(p) 

= 
L(n*, p). The "if" part of the proposition 

then follows from linearity of L in p. 

Lemma 5.3.1. (Jensen's Inequality): Let S be a complete and separable metric space 
and let q be any joint (Borel) probability onfi=0xS. Let p and p(-\s) denote 

respectively the marginal and conditional distribution of q on 0. If W is any 
continuous and convex function on M (the set of finite signed measures on 0 

endowed with the total variation norm) then W(p) < 
?sW(p(\s))dq. 

Proof of lemma 5.3.1.: This is a straightforward application of the version of 

Jensen's inequality typically found in mathematical analysis textbooks. (See 

Woodroofe(1982)). 

Proof of Proposition 5.3. Let p, a, d9 y, and y' be as in Proposition 5.3. Let y*' be 
as in the definition 5.1 of sufficient experiments. Let Q denote the joint probability 
distribution of (y*', y, 9) as defined in section VI; and let p(-\ y), p(-\ y*') and p(-\ y*', y), 
denote the marginals on 0 of the probability Q conditional on y, y*' and {y*'9 y} 
respectively. Fix any y*'eY, and consider an agent with initial prior \i 

? 
p(\y*'), 

obtained from the observation of y*' only. Suppose such an agent then observes y. 
The posterior distribution over 0 will be p(-\y*'9y). Since the value function V is 

continuous and convex (Proposition 3.2), an application of Jensen's inequality 

(Lemma 5.3.1) implies that 

v(p(\yn)<?YV(p(\y*\y))dQ('\y*'Y (5.3.2) 

Let LHS, RHS denote respectively the left and right hand side of (5.3.2). Since by 
construction the distribution of / conditional on 9 is that same as that of y*' 
conditional on 0, J(LHS)dQ 

= 
? V(p(- \y*'))dQ = E\_V(B(a'9 /, p))l Since conditional 

on y9 y*' is independent of 0, p(-\y*'9y) 
= 

B(a9y9p)9 so 
?(RHS)dQ 

= 
E[V(B(a9y9p))l 

Hence (5.3.2) implies Proposition 5.3. 

Proof of Proposition 6.1. If Proposition 5.3 holds with equality then (5.3.2) in the 

proof of Proposition 5.3 must hold with equality (for Q-a.e. y*'). For any such y*'9 

using arguments similar to those used in the proof of Proposition 4.1, it is easy to 

show that if the *-policy n*(y*') is optimal for the initial prior p('\y*') then that 

-policy is also optimal for the initial prior p('\y*\y) for 6(1^*') almost every y. 
Since p(-\y*', y) 

= 
p('\y), this means that conditional on y*', the optimal action from 
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p(-\y*') is equal to the optimal action from p(-\y), for Q('\y*) a.e. y, from which part 

(a) follows. Next, let C be any (measureable) subset of the action space A, and let EQ 
denote expectations with respect to Q. Then Q({a2eC}\9) 

= 
EQ[Q({a2eC} \y*\ 0)|0] 

(by iterated conditioning) = 
EQ[Q({a*'?C}\y*'99)\9'] (from part (a)) = 

Q({a*'eC}\9) 
(upon integration) 

= 
Q({a'2eC}\9) (since y*' has same distribution as /). 
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